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Noninvasive, radiological image-based detection and stratification
of Gleason patterns can impact clinical outcomes, treatment
selection, and the determination of disease status at diagnosis
without subjecting patients to surgical biopsies. We present machine
learning-based automatic classification of prostate cancer aggressive-
ness by combining apparent diffusion coefficient (ADC) and T2-
weighted (T2-w) MRI-based texture features. Our approach achieved
reasonably accurate classification of Gleason scores (GS) 6(3+3) vs.
≥7 and 7(3+4) vs. 7(4+3) despite the presence of highly unbalanced
samples by using two different sample augmentation techniques fol-
lowed by feature selection-based classification. Our method distin-
guished between GS 6(3+3) and ≥7 cancers with 93% accuracy for
cancers occurring in both peripheral (PZ) and transition (TZ) zones and
92% for cancers occurring in the PZ alone. Our approach distin-
guished the GS 7(3+ 4) from GS 7(4+3) with 92% accuracy for can-
cers occurring in both the PZ and TZ and with 93% for cancers
occurring in the PZ alone. In comparison, a classifier using only the
ADC mean achieved a top accuracy of 58% for distinguishing GS
6(3+ 3) vs. GS ≥7 for cancers occurring in PZ and TZ and 63% for
cancers occurring in PZ alone. The same classifier achieved an accuracy
of 59% for distinguishing GS 7(3+ 4) fromGS 7(4+ 3) occurring in the
PZ and TZ and 60% for cancers occurring in PZ alone. Separate anal-
ysis of the cancers occurring in TZ alone was not performed owing to
the limited number of samples. Our results suggest that texture fea-
tures derived fromADC and T2-wMRI together with sample augmen-
tation can help to obtain reasonably accurate classification of
Gleason patterns.

Gleason score classification | learning from unbalanced data |
multiparametric MRI | PCa Gleason 6 vs. ≥7 | PCa Gleason (3+4) vs. (4+3)
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Prostate cancer (PCa) is among the most common cancers and
a leading cause of cancer-related death in men in the United

States (1). In general, patients diagnosed with PCa with a Gleason
score (GS) (≤6) have better 5- and 10-y survival rates, lower bio-
chemical recurrence rates, and lower prostate cancer-specific mor-
tality than do patients with GS ≥7 (2). Similarly, compared with
patients with GS 7ð4+ 3Þ, those with GS 7ð3+ 4Þ have better
outcomes (2). The GS and prostate specific antigen (PSA) level
are clinically used to determine PCa aggressiveness (3). GS is a
well-validated factor and known to be a powerful predictor of dis-
ease progression, mortality, and outcomes (4, 5). However, owing to
random sampling, the GS determined through biopsies is known to
differ from those determined following radical prostatectomy (6, 7),
as well as between immediate repeat biopsies (8). Therefore, the
ability to automatically detect the GS with high accuracy from
the diagnostic MRIs would have a significant impact on clinical
decision making, treatment selection, and prediction of outcomes
for patients and spare them from painful biopsies and their ac-
companying risk of complications. Noninvasive and accurate tech-
niques that determine the aggressiveness of PCa are needed to
enhance the quality of patient care.

Previously, MRI has been investigated (9) as a modality for
determining PCa aggressiveness. Although MRI has been shown
to be a valuable tool for PCa detection (10–13), there is no clear
consensus on the specific imaging biomarker that is most effective
in distinguishing the aggressiveness of PCa lesions. In addition to
MR spectroscopic and T2-weighted (T2-w) MR imaging, the ap-
parent diffusion coefficient (ADC) from diffusion-weighted MRI
has been confirmed to be valuable for differentiating PCa aggres-
siveness (14–17). However, studies differ in the specific ADC value
used to distinguish between the cancers. The features used have
included ADCmean computed from a single slice region of interest
(ROI) (15, 16, 18), ADC mean computed from the entire volume
using different sets of diffusion b-values (all vs. fast vs. slow) (19),
10th percentile of the ADC computed from the entire lesion (20),
10th percentile and ADC mean (21), and ADC mean computed
over the entire lesion (22). Furthermore, none of the aforemen-
tioned studies used more than five imaging features for the analysis.
Texture-based imaging features in conjunction with machine

learning-based classification have predominantly been applied for
classifying malignant from noncancerous prostate tissues (23–25)
with one exception (26). Linear discriminant analysis (LDA)-based
classification of various histogram-based ADC measures, namely,
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ADC mean, 10th percentile, T2-w histogram-based skewness, and
k-trans were used to distinguish between cancer vs. benign and
between cancer GSs (21). Our work builds on the aforementioned
work by classifying GS 7ð3+ 4Þ vs. 7ð4+ 3Þ in addition to classifying
cancer vs. noncancerous prostate and GS 6ð3+ 3Þ vs. GS ≥7 with
texture-based features derived from ADC and T2-w MR images.
Furthermore, our work addresses an important problem of
obtaining highly accurate machine learning despite severe class
imbalance between the different groups of cancers by using sample
augmentation with feature selection.
Our work demonstrates that PCa diagnosis can be improved by

combining data-augmented classification together with more of the
latent information in standard MRIs (the so-called “radiomics
hypothesis”) (27, 28) compared with using ADC mean or T2 signal
intensities alone, thereby reducing the potential for under- or
overdiagnosis. Fig. 1 A and B show the ADC energy, ADC entropy,
T2 energy, and T2 entropy overlaid on a slice of the ADC and
corresponding T2-w MR image for two different patients: one with
a tumor of GS 6ð3+ 3Þ and the other with a tumor of GS 9ð4+ 5Þ.
As shown in Fig. 1 A and B, the energy and entropy values com-
puted from different tumor types appear to be very different, which
suggests that textures, in combination with ADC, can help to dif-
ferentiate between the cancer types.

Materials and Methods
The retrospective study used for the analysis in this workwas approved by the
Institutional Review Board, which waived written informed consent. The
study population used in this study was the same as the one used in our
previous work (29).

Study Population. The study population consisted of T2-w and ADC MR images
acquired from 217 men subjected to MR imaging with the following inclusion
criteria: (i) patients with biopsy-proved PCa, (ii) radical prostatectomy performed
in our institution between January and December 2011, (iii) endorectal 3T
prostate MRI performed within 6 mo of prostatectomy, and (iv) with whole-
mount step-section pathological tumor maps. Patients with prior treatment for
prostate cancer (n = 7), those with cancers <0.5 mL on histopathology (n = 51),
those with imaging artifacts making segmentation of cancer difficult (n = 8), and
those whose cancer location precluded segmentation of normal structures (n =
7) were excluded from study. The final number of male patients in the study
population was 147. More details about patient selection are provided in ref. 29.

MR Image Acquisition and Histopathological Image Analysis. All MR images
were acquired on a 3.0-T MR imaging system (Signa HDX; GE Medical Sys-
tems), with a pelvic phased-array coil in combination with an endorectal coil
(Medrad) for improved signal reception. Transverse T1-w images were acquired
by using the following parameters: repetition time (milliseconds)/echo time
(milliseconds), 467–1,349/6.6–10.2; section thickness, 5 mm; intersection gap,
1 mm; field of view, 22–40 cm; and matrix, 256 × 192–448 × 224. Transverse,

coronal, and sagittal T2-w fast spin-echo images were acquired with the fol-
lowing parameters: 2,500–7,700/83.3–143.5; section thickness, 3–4 mm; in-
tersection gap, 0–1 mm; field of view, 14–24 cm; and matrix, 288 × 288–448 × 224.
Diffusion-weighted sequences were performed in the transverse plane by using a
single-shot spin-echo echo-planar imaging sequence with two b values (0 and
1,000 s/mm2) (3,500–5,675/70.3–105.6; section thickness, 3–4 mm; no intersection
gap; field of view, 14–24 cm; matrix, 96 × 96–128 × 128) and with the same
orientation and location used to acquire transverse T2-w images. The ADCmaps
were computed from Advanced Workstation (GE Medical Systems). The excised
prostates, following the amputation of seminal vesicles, were serially sectioned
from apex to base at 3- to 5-mm intervals and submitted as whole-mount
sections for histopathologic examination. The Gleason grade patterns in each
lesion were determined, and the corresponding lesion borders were outlined
on each slide. More details of MR image acquisition and the histopathological
analysis are provided in ref. 29.

Image Segmentation. Tumors and normal structures were identified and
volumetrically segmented on both the T2-w and ADC MR images by three
readers in consensus: one genitourinary imaging research fellow (A.W.), one
clinical urology research fellow (T.G.), and one pathology research fellow (K.M.),
using 3DSlicer (30) as described in ref. 29. PCa foci ≥0.5 mL were first identified
from the pathology whole-mount step-section tumor images. Given the similar
slice thickness of the step-section (3–5 mm) and the MR images (5 mm), visual
coregistration was used to find the corresponding slices on the T2-w and ADC
MR images. Furthermore, anatomical landmarks including urethra, ejaculatory
ducts, prostatic capsule, and well-delineated hyperplastic nodules were used to
pinpoint the appropriate tumor. The draw tool available in the Editor module
of the 3DSlicer was used to delineate the tumors in multiple slices. In addition
to tumors, a noncancerous prostate region was delineated in both the pe-
ripheral zone (PZ) and the transition zone (TZ) of each patient and marked. To
avoid any errors from automatic registration, the tumors and normal structures
were drawn on both T2-w and ADC images.

Texture Features. First- and second-order texture features were computed
from the T2-w and ADC MR images following preprocessing and intensity
rescaling (0–255). The first-order features consisted of the moments of the
intensity volume histogram (mean, SD, skewness, and kurtosis) computed
from the structure ROI. The second-order features, namely the Haralick
features (31), were computed using the gray level co-occurrence matrix
(GLCM) with 128 bins and consisted of energy, entropy, correlation, homo-
geneity, and contrast. The first-order features were computed from an in-house
software implemented in Matlab (32) and the Haralick features from an in-
house software implemented in C++ using the Insight Toolkit (ITK) (33).

Sample Augmentation Through Oversampling. Class imbalance can adversely
impact the performance of a classifier wherein all of the samples are classified
as the majority class, thereby obtaining fairly good classification accuracy,
albeit with low specificity or sensitivity. Oversampling (34) and sample
weighting (35) are two solutions to address this problem. Our work builds on
ref. 34 and used two different sampling approaches: (i) sample generation
from joint weighting of multiparametric features using synthetic minority

Fig. 1. Example of (A) a GS 6ð3+ 3Þ tumor and (B) a GS 9ð4+ 5Þ tumor. The top row shows the ADC image with the computed energy and entropy values
overlaid on the tumor. The bottom row shows the T2-w MR image with the computed energy and entropy values overlaid on the same tumor on the
corresponding slice. The texture features were computed per voxel by using a 5× 5× 5 patch centered at each voxel.
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oversampling technique (SMOTE) (34) and (ii) sample generation through
conditionally independent features using Gibbs sampling (36). The former
technique requires all features to be scaled to the same level, whereas Gibbs
sampling avoids this requirement. To prevent influence of outliers from
shrinking the decision boundary between two classes, we used outlier rejection
using K = 5 nearest neighbors. Gibbs sampling has not previously been explored
in the context of sample augmentation for improving machine learning
robustness.

Feature Selection and Classification. We evaluated the efficacy of three dif-
ferent methods for classifying the PCa GSs. The methods incorporated different
levels of interaction between feature selection and classifier training. The
methods were as follows:

• t Test Support Vector Machine (t test SVM), wherein the set of features
were selected before classifier training through a two-sided, unpaired
t test (37). Only those features that were significantly different at 95%
confidence level (P ≤ 0.05) were selected.

• Adaptive Boosting (AdaBoost), wherein the feature selection was inte-
grated with the training, although the features were selected linearly
(one feature at a time). AdaBoost (38) extracts a “strong” classifier from
linear combinations of “weak” classifiers such that the strong classifier
has a higher accuracy than any of the individual classifiers.

• Recursive Feature Selection Support Vector Machine (RFE-SVM), wherein
the feature selection was integrated with the classifier training and the
interaction of features was modeled. By allowing feature interactions,
RFE-SVM (39, 40) explicitly models the correlations between features,
thereby leading to robust classifier performance. Feature selection in-
volved backward elimination where in each iteration, the feature that
had the least impact on improving the performance of the classifier was
removed. The algorithm continued until the desired number of features r
was reached; r can be chosen empirically or through a separate cross-
validation model selection as used in this work. The RFE-SVM is essentially
a method for ranking the relative importance of a set of features such
that the top-few features, i.e., those that remain through the longest
number of iterations are chosen for training the SVM. A particular fea-
ture is deemed irrelevant, when the margin of two SVM classifiers, one
trained with and the other trained without the same feature is the small-
est compared with the margin differences of all of the features remaining
in the given iteration.

Cross-Validation. Each method was evaluated independently through stratified
ðK = 10Þ-fold cross-validation. The goal of cross-validation was not to select
among the different methods. The hyperparameters for each classifier were
selected separately through K-fold cross-validation–based model selection. The
SVM classifiers used radial basis function (RBF) kernels and the hyperparameters
consisted of the RBF kernel’s width parameter γ = f0.01, 0.02, . . . , 0.3g, and the
misclassification penalty C = f0.1, 1,5,10g. The RFE-SVM included a third pa-
rameter, namely, the number of features r. The model parameters were selected
to be those that resulted in the best overall accuracy over all of the K folds.
Following model selection, the individual classifiers were evaluated separately
using repeated stratified (K = 10) cross-validation with 100 trials. Stratified cross-
validation ensures that each fold of the classifier has equal proportion of data
from each class. Repeated cross-validation helps to estimate any error due to
particular partitioning of the data. To avoid overoptimistic cross-validation re-

sults owing to hyperparameter selection bias, the final cross-validation accuracies
were reduced by a bias computed from the cross-validation model selection as
used in the Tibshirani and Tibshirani method (41). The Tibshirani bias is the mean
of the difference between the error on all of the folds using the parameters that
minimize overall error and the parameters that result in minimum error in each
fold. AdaBoost did not use any hyperparameter model selection, and hence, bias
correction was unnecessary.

Results
Experimental Description.We analyzed the efficacy of classifying GS
6ð3+ 3Þ (n = 34) vs. GS ≥7 (n = 159) cancers and GS 7ð3+ 4Þ (n =
114) vs. 7ð4+ 3Þ (n = 26) cancers using (i) t test SVM, (ii) RFE-
SVM, and (iii) AdaBoost trained without and with sample aug-
mentation using (i) Gibbs oversampling and (ii) synthetic minority
oversampling technique (SMOTE) oversampling. To compare our
results with those of previous works (23–25), we also applied the
same methods for distinguishing between noncancerous structures
and prostate cancers. The number of samples for noncancerous
structures (n = 158) and cancer (n = 198, the GS for five tumors
were not provided) were balanced, and hence, did not require
sample augmentation. Finally, we compared the performance of
texture feature-based classifiers with SVM classifiers trained with (i)
ADC mean and (ii) ADC mean and T2 mean computed from in-
side the segmented tumor volumes.
All classifiers were trained with identical samples. In the sample

augmentation experiments, the samples in the minority and ma-
jority class were oversampled to 200 samples in each class. We also
experimented with different ratios of samples (minority class sampled
to exact number of majority samples, 400 samples in the minority
and majority class). We present only the results for 200 samples
as the classifier performance increased with the increasing number
of samples.

Cancer vs. Noncancerous Tissue Classification. We analyzed the
classification performance of the three methods for classifying
noncancerous prostate from cancers that occurred in both the
PZ and TZ. SVM trained using ADC mean achieved an accuracy
of 0.84 (or 84%) with a sensitivity of 0.87 and specificity of
0.84, resulting in a Youden index of 0.71. T2 mean added to
SVM with ADC mean achieved a similar accuracy of 0.81 with
a Youden index of 0.64. Youden index, also referred to as Youden
(J)-statistic (42), summarizes the ROC curve and is an indicator for
the performance of a classifier. It is expressed by combining the
specificity (sp) and sensitivity (se) as sp+ se− 1.
In comparison, the classifiers trained using 18 different tex-

ture features with feature selection achieved the following ac-
curacies: t test SVM, 0.95 accuracy and Youden index of 0.91;
RFE-SVM, 0.96 accuracy and Youden index of 0.91; AdaBoost,
0.95 accuracy and Youden index of 0.89. ADC mean was selected
as a significant feature by the t test in addition to ADC entropy,

Fig. 2. Classification accuracies for the t test SVM, RFE-SVM, and AdaBoost for separating lesions by their Gleason score, GS 6ð3+ 3Þ vs. GS ≥ 7 in the PZ and TZ
using Gibbs oversampling with 200 samples in each class (A) and SMOTE oversampling with 200 samples in each class (B).
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ADC homogeneity, ADC SD, and ADC energy. ADC mean was
also selected among the relevant features chosen by the RFE-
SVM, although it was ranked as a low impact feature. The Ada-
Boost method selected ADC entropy, ADC mean, ADC energy,
T2 kurtosis, and ADC contrast as the top five features. Although
ADC mean was selected as a relevant feature, the addition of
texture features improved the classification performance of all of
the classifiers compared with the SVM using ADC mean alone.

GS 6(3+ 3) vs. GS ≥7 Classification. We analyzed the performance
of the classifiers for (i) cancers occurring in both the PZ and TZ
and (ii) cancers occurring in the PZ alone. The number of
cancers in the TZ was too small for analysis. In both the afore-
said scenarios, the number of cancers that occurred in the GS
6ð3+ 3Þ class was much smaller than the number of cancers in
the GS ≥7 category. We analyzed the performance of the various
classifiers trained without any sample augmentation and with
samples augmented using Gibbs and SMOTE methods. In gen-
eral, the classification accuracy, sensitivity, and specificity of the
classifiers regardless of the cancer location were much lower
without sample augmentation in comparison with classifiers trained
using samples generated by either the Gibbs or SMOTE methods.
Table 1 shows the accuracies of the classifiers applied to GS

classification using textures (t test SVM, RFE-SVM, AdaBoost),
SVM trained using ADC mean, and SVM trained using ADC
mean and T2 mean. Results are also shown when the classifiers
were trained without and with augmented samples obtained from
Gibbs and SMOTE methods. The Youden index is shown next to
the accuracy. As shown in Table 1, when the classifiers were
trained without any sample augmentation, there was no real
difference in the accuracies between the classifiers using textures
vs. the SVM classifiers using ADC mean or ADC mean and T2
mean. Furthermore, even though the accuracies were seemingly
high, ranging from 0.73 for AdaBoost to 0.83 for t test SVM and

RFE-SVM (for cancers occurring in the PZ and TZ), the You-
den index was close to 0 for all of the classifiers. A similar result
was seen for cancers occurring in the PZ alone, although the
achieved accuracies were higher ranging from 0.79 for the
AdaBoost to 0.86 for the t test SVM and with all of the classifiers
having a low Youden index, the highest being for the AdaBoost,
namely, 0.34. The high accuracy but low Youden index suggests
that the classifiers learned a biased model, wherein the majority
of the data were classified as the majority class.
On the other hand, when the classifiers were trained using

augmented samples obtained either from the Gibbs or SMOTE
methods, the performance of the classifiers, particularly, the RFE-
SVM, improved drastically. As shown in Table 1, the classification
accuracy of the RFE-SVM for cancers occurring in the PZ and TZ
was 0.83 when trained using samples generated using Gibbs sam-
pling and 0.93 when trained using samples generated by using
SMOTE sampling. The Youden index of the RFE-SVM improved
from 0.03 without sample augmentation to 0.71 with Gibbs sam-
pling and 0.91 with SMOTE sampling. A similar result was seen for
cancers occurring in the PZ only using the RFE-SVM classifier.
Additionally, the difference in performance when using the texture
features in comparison with ADC mean or ADC mean and T2
mean alone was apparent when the classifiers were trained with
augmented samples. As seen, the performance of the classifiers
trained without textures (ADC mean and ADC mean and T2
mean) was much worse than when the classifiers were trained using
the texture features. The texture-based AdaBoost method resulted
in a low accuracy of 0.64 for the PZ and TZ and 0.72 for cancers in
the PZ using SMOTE sampling. The corresponding accuracy of the
SVM trained with ADC mean and the same sampling technique
was 0.58 for the PZ and TZ cancers and 0.59 for PZ only cancers.
Whereas no difference in the accuracy was observed with the ad-
dition of T2 mean for Gibbs’ sampling, a slight improvement in

Table 1. Accuracy results for GS 6(3+ 3) vs. GS ≥7 classification for tumors with and without oversampling

Method

PZ and TZ sites PZ site only

34/159 samples 200/200 samples 200/200 samples 23/120 samples 200/200 samples 200/200 samples

not augmented Gibbs SMOTE not augmented Gibbs SMOTE

t test SVM 0.83 (0.06) 0.73 (0.53) 0.82 (0.65) 0.86 (0.24) 0.70 (0.46) 0.79 (0.62)
RFE-SVM 0.83 (0.03) 0.83 (0.71) 0.93 (0.91) 0.84 (0.00) 0.89 (0.83) 0.92 (0.89)
AdaBoost 0.73 (0.11) 0.69 (0.38) 0.64 (0.28) 0.79 (0.34) 0.72 (0.44) 0.72 (0.44)
ADC-SVM 0.82 (0.00) 0.57 (0.22) 0.58 (0.22) 0.84 (0.00) 0.63 (0.27) 0.59 (0.23)
ADC&T2-SVM 0.82 (0.00) 0.57 (0.22) 0.64 (0.38) 0.84 (0.00) 0.63 (0.29) 0.62 (0.29)

The numbers in parentheses correspond to the Youden Index. The bold fonts indicate the best classification accuracies for the
augmented cases.

Fig. 3. Features chosen by the AdaBoost and the RFE approach for the GS 6ð3+ 3Þ vs. GS ≥ 7 classification in the PZ and TZ. The blue bars represent the
relative feature importance computed by AdaBoost. The red bars represent the iteration at which the features were rejected by RFE. The results using Gibbs
and SMOTE oversampling are given in A and B respectively.
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accuracy was noted when using SMOTE oversampling for cancers
in the PZ and TZ.
Fig. 2 shows a comparison in the performance of the texture-

based classifiers RFE-SVM, t test SVM, and AdaBoost trained
using samples generated from Gibbs sampling in Fig. 2A and
SMOTE sampling in Fig. 2B. The accuracies are shown with
increasing number of features starting from the most important
to the least important feature added to the feature set. t Test
SVM used six features that were found to be significantly different
between the two classes. As shown in Fig. 2, the accuracy of the
RFE-SVM and t test SVM is better when trained using the
SMOTE sampling method than when using the Gibbs sampling
method. The accuracy of the AdaBoost was the same regardless of
the sampling method and the number of features. On the other
hand, the accuracy of the RFE-SVM ranged from 0.58 with 1
feature to 0.83 with 15 features, when trained using samples gen-
erated from Gibbs and from 0.56 with 1 to 0.93 with 18 features
using the SMOTE method.
Fig. 3 shows the relative ranking of the various features as

selected by the AdaBoost and RFE-SVM methods trained with
samples generated from the Gibbs and SMOTE methods for
separating GS 6ð3+ 3Þ vs. GS ≥7 cancers occurring in the PZ and
TZ. As shown in Fig. 3A, the ADC correlation was the highest
ranked feature selected by the RFE-SVM method with Gibbs
oversampling. The next four important features were T2 SD,
ADC skewness, T2 skewness, and T2 homogeneity. ADC kur-
tosis and T2 entropy were among the least important features.
Similarly, when using the SMOTE sampling method, RFE-SVM
ranked ADC contrast, ADC skewness, T2 skewness, ADC mean,
and T2 kurtosis among the most important. AdaBoost and RFE-
SVM result in different ordering of the relative importance of
features. For instance, with both the sampling methods, ADC
entropy was the most relevant feature for the AdaBoost method,
whereas it was not as important when using the RFE-SVM
method. Incidentally, ADC entropy was among the features that
were found to be significantly different between the GS 6ð3+ 3Þ vs.
≥7 cancers using the t test. The relative ranking of features was
obtained by applying the RFE-SVM with the selected hyper-
parameters on the entire dataset. Clearly, when applying the cross-
validation–based model assessment, the relative ranking of features
may vary from fold to fold.
Fig. 4 shows the ROC curves for RFE-SVM, t test SVM, and

AdaBoost trained from samples generated using SMOTE for
distinguishing GS 6ð3+ 3Þ vs. GS ≥7 PZ and TZ cancers in Fig.
4A and PZ-only cancers in Fig. 4B. As shown in Fig. 4A, the
RFE-SVM produced the best classification performance, and the
AdaBoost resulted in the worst performance. The RFE-SVM and
the t test SVM achieved an area under the curve (AUC) of 0.99 and
0.90, respectively, with SMOTE and 0.91 and 0.83 with Gibbs
sampling for PZ and TZ cancers. AdaBoost achieved an AUC of
0.60 with SMOTE and 0.74 using Gibbs sampling. The AUC of the
same classifiers for PZ only cancers were as follows: RFE-SVM,

0.99 (SMOTE), 0.97 (Gibbs); t test-SVM, 0.89 (SMOTE), 0.80
(Gibbs); and AdaBoost, 0.79 for SMOTE and Gibbs sampling. The
bias for all classifiers ranged from 0.01 to 0.05, with a bias of 0.03
and 0.02 for RFE-SVM using Gibbs and SMOTE oversampling,
respectively.

GS 7(3+ 4) vs. GS 7(4+ 3) Cancer Classification. Table 2 shows the
classification accuracies together with the Youden index for the
various classification methods for distinguishing GS 7ð3+ 4Þ
from GS 7ð4+ 3Þ for cancers that occurred in (i) PZ and TZ and
(ii) in PZ only when trained without and with samples aug-
mented using the Gibbs and SMOTE methods. Similar to the GS
6ð3+ 3Þ vs. GS ≥7 cancers, all classifiers achieved comparably
poor performance without sample augmentation. However, all of
the classification methods’ performance improved following either
sampling techniques. The RFE-SVM method achieved the best
performance, regardless of the sampling technique and location of
cancers (PZ and TZ or PZ only). The classifiers (t test SVM, RFE-
SVM, AdaBoost) using texture features achieved better classification
performance compared with SVM trained with ADC mean or SVM
trained with ADC mean and T2 mean.
Fig. 5 shows a comparison in the performance of the texture-

based classifiers RFE-SVM, t test SVM, and AdaBoost trained
using samples generated from Gibbs sampling (Fig. 5A) and
SMOTE sampling (Fig. 5B), for classifying cancers occurring in the
PZ and TZ into GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ. The accuracies are
shown with an increasing number of features starting from the most
important to the least important. Three features were selected as
being significantly different by the t test. As shown in Fig. 5, the
accuracy of the RFE-SVM and t test SVM were better when
trained using the SMOTE sampling method than when using the
Gibbs sampling method. The AdaBoost method was relatively less
impacted by the features added to the classifier. On the other hand,
the accuracy of the RFE-SVM varied from 0.60 with 1 feature to a
maximum of 0.86 and 0.92 with 15 features when using Gibbs (Fig.
5A) and SMOTE oversampling (Fig. 5B).
Fig. 6 shows the relative importance of the various features

when trained with the RFE-SVM and AdaBoost methods using
the two different sample augmentation techniques Gibbs (Fig.
6A) and SMOTE (Fig. 6B). ADC contrast, T2 entropy, ADC
entropy, T2 skewness, and ADC mean were among the top five
ranked features when using Gibbs sampling with RFE-SVM,
whereas SMOTE-based RFE-SVM selected T2 homogeneity,
ADC contrast, T2 kurtosis, ADC energy, and T2 mean as the top
five features. AdaBoost, on the other hand, selected ADC en-
tropy as the third most relevant feature after ADC kurtosis and
T2 SD for Gibbs oversampling and as the second most relevant
feature after ADC homogeneity for SMOTE.
Fig. 7 shows the ROC curves for RFE-SVM, t test SVM, and

AdaBoost trained from samples generated using SMOTE for
classifying GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ cancers in the PZ and TZ
(Fig. 7A) or the PZ alone (Fig. 7B). The AUC when trained

Table 2. Accuracy results for GS 7(3+4) vs. GS 7(4+3) classification for tumors with and without oversampling

Method

PZ and TZ sites PZ site only

114/26 samples 200/200 samples 200/200 samples 80/25 samples 200/200 samples 200/200 samples

not augmented Gibbs SMOTE not augmented Gibbs SMOTE

t test SVM 0.81 (0.00) 0.66 (0.39) 0.76 (0.55) 0.76 (0.00) 0.65 (0.32) 0.63 (0.32)
RFE-SVM 0.83 (0.11) 0.86 (0.76) 0.92 (0.88) 0.81 (0.23) 0.85 (0.76) 0.93 (0.91)
AdaBoost 0.79 (0.41) 0.76 (0.52) 0.73 (0.46) 0.76 (0.36) 0.74 (0.48) 0.75 (0.50)
ADC-SVM 0.81 (0.00) 0.59 (0.24) 0.56 (0.19) 0.76 (0.00) 0.60 (0.24) 0.60 (0.22)
ADC&T2-SVM 0.81 (0.00) 0.64 (0.32) 0.57 (0.24) 0.76 (0.00) 0.61 (0.26) 0.54 (0.17)

The numbers in parentheses correspond to the Youden Index. The bold fonts indicate the best classification accuracies for the
augmented cases.
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using SMOTE and Gibbs sampling were as follows: RFE-SVM,
0.99, 0.94 (PZ and TZ), 0.98, 0.95 (PZ only); t test SVM,
0.80, 0.75 (PZ and TZ), 0.72, 0.66 (PZ only); AdaBoost, 0.77, 0.81
(PZ and TZ), 0.82, 0.80 (PZ only), respectively. The bias for all
classifiers ranged from 0.01 to 0.05 with a bias of 0.02 for RFE-
SVM in all cases but Gibbs oversampling in the PZ only (0.03).

Discussion and Future Work
Whereas expert users can detect malignant cancers with very
high accuracy, visually determining the cancers’ aggressiveness
from MR images is a challenging problem. Automatic classifi-
cation techniques can simultaneously analyze a large number of
imaging features that are beyond the scope of visual analysis by a
clinician. Furthermore, algorithms that can achieve robust and
consistent classification can be a very valuable tool that can aid
clinicians in identifying appropriate treatment options for pa-
tients without subjecting them to unnecessary interventions.
Our work used three different methods: (i) t test SVM,

(ii) AdaBoost, and (iii) RFE-SVM.We compared the performance
of the aforementioned methods with SVMs trained using (i) ADC
mean and (ii) ADC mean and T2 mean. The RFE-SVM achieved
the best classification performance with the highest specificity and
sensitivity for all of (i) cancer vs. noncancerous, (ii) GS 6ð3+ 3Þ vs.
GS ≥7, and (iii) GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ for both sample
augmentation methods. RFE-SVM outperformed or achieved
about the same accuracy and performance as the other methods
even when not using any sample augmentation. The reason for the
better performance of the RFE-SVM method in comparison with
the other methods is that the RFE-SVM method incorporates the
interaction of features when selecting features as opposed to t test,
which treats the features as being independent and AdaBoost,

which uses conditional independence of the features during feature
selection. The poor performance of the AdaBoost method can be
explained by overfitting (43), particularly in the presence of in-
sufficient and unbalanced training data, as was the case in our
dataset. Furthermore, as the tumors were segmented in MR im-
ages by matching their approximate location in histology, any
errors resulting from correlating MR images obtained through
an endorectal coil (which distorts the shape of the prostate) with
the whole-mount step-section specimens would adversely affect
AdaBoost performance. The poor performance of the Adaboost
method results from the fact that the method focuses more on the
problematic examples for classification in each iteration. The RFE-
SVM and t test SVM were less impacted by such errors compared
with the AdaBoost as all examples were treated equally.
Previously, in ref. 26, they used a hierarchical machine learning-

based automatic voxel-wise classification of GS [6ð3+ 3Þ and
7ð3+ 4Þ] vs. GS [7ð4+ 3Þ and ≥8] cancers by combining T2-w MR
images with MR spectroscopy images. The number of samples
used, namely, 29 patients in ref. 26, was much smaller than the
147 patients used in our work. Furthermore, our approach
combined the ADC textures with the T2-w MR texture features
for classifying both GS 6ð3+ 3Þ from GS ≥7 and differentiating
between the GS 7 cancers by their primary Gleason subtype,
namely, ð3+ 4Þ vs. ð4+ 3Þ. Our work also incorporated sample
augmentation methods to tackle the problem of highly unbalanced
data and achieved a much higher accuracy of 0.93 for cancers in
the PZ and TZ and 0.92 for cancers occurring only in the PZ
following reduction by the hyperparameter selection bias. The
majority of the prior works have been focused on classifying
cancerous regions from benign structures (24, 25, 43, 44). Our
results for classifying noncancerous prostate from malignant cancers

Fig. 5. Classification accuracies for the t test SVM, RFE-SVM, and AdaBoost for separating lesions by their Gleason score, GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ in the PZ
and TZ using Gibbs oversampling with 200 samples in each class (A) and SMOTE oversampling with 200 samples in each class (B).

Fig. 4. ROC curves for RFE-SVM, t test, SVM, and AdaBoost performances when using SMOTE augmented samples (200 samples for each class) for GS 6ð3+ 3Þ
vs. GS ≥ 7 occurring in (A) PZ and TZ and (B) PZ only.
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were similar or better. The accuracies of our methods were as fol-
lows: t test, SVM (0.95) compared with 0.89 using the same method
in ref. 44 (with 42 cancer region of interests); the AdaBoost
(0.95); and RFE-SVM (0.96) for cancers that occurred in both
the PZ and TZ. In ref. 24, the classification accuracy of can-
cerous vs. noncancerous structures for PZ tumors was 0.73 with
22 patients.
ADC mean has been shown to be a viable biomarker for differ-

entiating cancers by their aggressiveness with reasonable accuracy of
0.75 (22). Our work investigated the efficacy of ADC mean as a
feature when used with automatic machine learning-based classifi-
cation and compared its performance to three different classification
methods that used texture features derived from ADC and T2-w
MRI. Our results suggest that texture features drastically improved
the classification performance of the automatic methods in
comparison with using ADC mean alone for both GS 6ð3+ 3Þ vs.
GS ≥7 and GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ cancers. Classifiers trained
using more features than just the ADC mean or T2 mean resulted in
higher accuracies particularly with augmented samples. ADC mean
was ranked among the top 10 features by the RFE-SVM method
for classifying GS 6ð3+ 3Þ vs. GS ≥7 cancers regardless of the
sampling method. ADC mean was found as a significant feature
by the t test. In the analysis involving the GS 7ð3+ 4Þ vs. GS
7ð4+ 3Þ cancers, the ADC mean was the 8th and 5th most im-
portant feature selected by the RFE-SVM method when trained
using SMOTE and Gibbs sampling (for PZ and TZ cancers).
Previously, the authors of ref. 29 investigated the efficacy of

Haralick texture features for differentiating between GS 6ð3+ 3Þ
and GS ≥7 cancers and found that the higher GS cancers were
associated with relatively high ADC entropy and low ADC en-
ergy in comparison with low GS cancers that occurred in the PZ
on 147 patients with ≥0.5 mL histology volume. Our work ana-

lyzed the dataset with the same patients. The main difference in
the samples used in this work from ref. 29 is that more TZ cancer
examples were available for analysis. ADC entropy and ADC
energy were found to be significantly different between the GS
6ð3+ 3Þ and GS ≥7 cancers when using a two-sided, unpaired
t test and found to be the top feature by AdaBoost, which was
consistent with the results from ref. 29 for separating low from
high GS cancers. ADC entropy and ADC energy were not
ranked among the top five features by RFE-SVM.
Classifier accuracy in previous efforts has been restrained due

to the common machine learning obstacle of class imbalance:
less aggressive samples are typically fewer in number than highly
aggressive cancer samples, resulting in a bias in performance
(43). Class imbalance is very common in medical applications of
machine learning, compared with, say, financial risk modeling
where available datasets are typically much larger. Our work
addressed class imbalance through an innovative and general
sample augmentation/feature selection method that increases
classifier accuracy. Ignoring issues of class imbalance leads to
poor classifiers with low generalization capability. Our results
indicate that sample augmentation combined with machine
learning and feature selection help to improve the classification
performance of GS from MRI. All source code and anonymized
texture features data used for analysis will be made publicly
available on acceptance for publication. Owing to privacy con-
cerns, the patient MR and histopathology images cannot be
made publicly available.
However, all of the classifier performance results reported in this

work are cross-validation results, which is less ideal compared with
using a separate validation dataset. Over-optimistic results owing to
selection bias, as has been previously reported in refs. 45 and 46,
can be avoided through nested cross-validation and by reporting

Fig. 7. ROC curves for RFE-SVM, t test SVM, and AdaBoost performances when using SMOTE augmented samples (200 samples for each class) for GS 7ð3+4Þ
vs. GS 7ð4+ 3Þ occurring in (A) PZ and TZ and (B) PZ only.

Fig. 6. Features chosen by the AdaBoost and the RFE approach for the GS 7ð3+ 4Þ vs. GS 7ð4+ 3Þ classification in the PZ and TZ. The blue bars represent the
relative feature importance computed by AdaBoost. The red bars represent the iteration at which the features were rejected by RFE. The results using Gibbs
and SMOTE oversampling are given in A and B respectively.
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model assessment accuracy (47). As has been shown in ref. 48,
there is little difference between nested cross-validation and the
Tibshirani (41) bias correction method. Given the already limited
number of samples in this work, using an additional internal cross-
validation would overly limit the data size, leading to a large var-
iance in the classifier performance. Therefore, we chose the bias
correction approach to report the repeated cross-validation results
following cross-validation–based hyperparameter selection. Fur-
thermore, we used K = 10-fold cross-validation as has been shown
to be robust in ref. 49. We used multiple classifiers for assessing
their performance on the dataset. However, obtaining statistically
meaningful comparisons as in ref. 50 was difficult because there
was only a single dataset. Besides, the goal of this work was not to
compare different classifiers but instead to assess whether rea-
sonable classification of cancer aggressiveness could be obtained
from multiparametric MR images alone when having highly un-
balanced training data.
Our work has several limitations. First, all of the analysis was

performed on retrospective data, and no true validation dataset
was available for evaluating the various methods. Second, our
classifications were performed per tumor instead of a voxel-wise
classification as in refs. 24, 26, and 43. The reason for this was
that texture parameters, in particular the Haralick textures com-
puted over the whole volume of the tumor, are more descriptive of
the underlying heterogeneity of the tumors, given the larger
number of voxels available to compute the texture values. In the
future, we plan to explore multiscale texture extraction methods
(using different neighborhoods around voxels) so that voxel-wise
classification can be explored with the goal of generating GS maps
of the tumor. Automated classification generated GS maps can
potentially aid in guiding surgical biopsy procedures. Third, in
this work, we explored only 18 different image-based features
including first- and second-order textures. Prior works (26, 43,
44) used first- and second-order texture features and additionally
used gradient (Sobel)-based and Gabor edge-based features at
multiple scales resulting in more than 100 different features. We
considered only the first- and second-order texture features pri-
marily because they seemed to be the most relevant texture fea-
tures for characterizing tumor heterogeneity, as shown in ref. 43.
Furthermore, when using about the same number of features as the
examples, it is not clear how well the learning method generalizes,
besides making the feature selection more difficult. Our work also
did not explore morphological features including volume, shape
characteristics of tumors, including solidity, convexity, and eccen-
tricity of tumors, and their relevance to aggressiveness of cancers.
We excluded such features to eliminate any bias resulting from the
manual segmentation. Exploration of additional imaging features
and shape-based features with prospective data are work for the
future. Finally, the ordering of the features was specific to the
available data, and confirmation of the ranking on more data
should also be done in the future.
In summary, highly accurate classification of PCa GS from T2-w

and ADC MR images is feasible despite highly imbalanced data.
Addition of texture-based features drastically improves the classi-
fication accuracy of GS in comparison with using ADC mean or T2
mean alone.

Conclusions
In this work, we presented multiple machine learning- and feature
selection-based methods for classifying (i) cancer vs. noncancerous
prostate, (ii) low GS 6ð3+ 3Þ vs. high GS ≥7, and (iii) GS 7ð3+ 4Þ
vs. GS 7ð4+ 3Þ cancers. Our results suggest that with sample
augmentation, reasonably accurate classification with high sensi-
tivity and specificity can be obtained, even for highly imbalanced
data such as in the classification of cancer GS. Our work also
showed that texture features computed from both ADC and T2-w
images drastically improve the classification performance than just
the ADCmean and T2 mean. Finally, incorporating the interaction
of image features for feature selection followed by a classification
method (RFE-SVM) achieved the highest classification accuracy.

Appendix: t Test Significance Values. The significance values for
the cancer vs. noncancerous class separation were as follows:
ADCentropy (<0.001), ADCmean (<0.001), ADChomogeneity
(<0.001), ADCSD (<0.001), ADCenergy (<0.001), ADCcorre-
lation (<0.001), ADCcontrast (<0.001), T2kurtosis (<0.001),
T2skewness (<0.001), T2mean (<0.001), ADCskewness (<0.001),
ADCkurtosis (<0.001), T2correlation (0.008), T2entropy (0.015),
T2contrast (0.018), T2homogeneity (0.075), T2energy (0.350), and
T2SD (0.739).
The significance values for the low and high aggressive [GS

6ð3+ 3Þ vs. GS ≥ 7] cancers in the PZ and TZ were as follows:
ADCmean (0.003), ADCenergy (0.003), ADCentropy (0.008),
ADCskewness (0.016), T2entropy (0.031), T2SD (0.038), ADCkurtosis
(0.089), T2energy (0.129), T2mean (0.133), T2contrast (0.147),
ADCcorrelation (0.208), ADChomogeneity (0.250), T2correlation
(0.321), T2homogeneity (0.479), ADCSD (0.490), T2kurtosis
(0.520), ADCcontrast (0.838), and T2skewness (0.925).
The significance values for the low and high aggressive [GS

6ð3+ 3Þ vs. GS ≥ 7] cancers in the PZ were as follows: ADCenergy
(0.002), ADCmean (0.002), ADCentropy (0.005), ADCskewness
(0.018), T2SD (0.096), T2entropy (0.136), ADCcorrelation (0.138),
ADCkurtosis (0.166), T2kurtosis (0.167), ADChomogeneity
(0.191), T2contrast (0.202), T2mean (0.314), ADCcontrast (0.508),
T2skewness (0.613), ADCSD (0.728), T2homogeneity (0.851),
T2energy (0.908), and T2correlation (0.994).
The significance values for the GS 7 [GS (3+4) vs. GS (4+3)]

cancers in the PZ and TZ were as follows: ADCmean (0.006),
ADCskewness (0.008), ADChomogeneity (0.019), T2SD (0.066),
T2entropy (0.093), T2energy (0.109), ADCentropy (0.119), T2mean
(0.156), ADCcorrelation (0.261), ADCcontrast (0.349), ADCkurtosis
(0.387), T2correlation (0.454), T2kurtosis (0.504), T2contrast
(0.602), ADCenergy (0.707), T2homogeneity (0.712), T2skewness
(0.723), and ADCSD (0.823).
The significance values for the GS 7 [GS (3+4) vs. GS (4+3)]

cancers in the PZ were as follows: ADCmean (0.004), ADC-
skewness (0.015), ADChomogeneity (0.054), ADCentropy (0.106),
T2SD (0.327), ADCcontrast (0.366), T2homogeneity (0.390),
ADCkurtosis (0.462), ADCcorrelation (0.500), T2entropy (0.561),
T2energy (0.618), ADCenergy (0.628), T2correlation (0.681),
T2mean (0.718), ADCSD (0.746), T2skewness (0.771), T2contrast
(0.912), and T2kurtosis (0.935).
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